Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 39: 74-81, may. 2019. tab, ilus, graf
Article in English | LILACS | ID: biblio-1052041

ABSTRACT

Background: CPEB is considered as an RNA-binding protein first identified in Xenopus oocytes. Although CPEB1 was involved in the growth of oocyte, its role in goat follicular granulosa cell has not been fully elucidated. To clarify the functions of this gene in goat follicular granulosa cells, CPEB1-overexpressing vector and interference vector were structured and transfected into follicular granulosa cells from Jiangsu native white goats of Nantong city, Jiangsu Province, China. The expression levels of differentiation-related genes including CDK1, Cyclin B1, and C-mos were determined 24 h after administration of CPEB1 by quantitative real-time polymerase chain reaction and Western blotting methods. Results: The expression levels of CDK1, Cyclin B1, and C-mos were significantly upregulated after overexpression and significantly downregulated after interference with CPEB1. Conclusions: The CPEB1 gene expression could affect the transcription of genes related to early cleavage divisions, which provided a reference for further research on its role in the growth and maturation of oocytes.


Subject(s)
Animals , Female , Oocytes , Transcription Factors/genetics , Goats/genetics , Transfection , Fertilization in Vitro , Gene Expression , Blotting, Western , Polymerase Chain Reaction/methods , RNA-Binding Proteins , Embryo Transfer , Livestock , Fluorescence , Granulosa Cells
2.
Indian J Ophthalmol ; 2015 Aug; 63(8): 665-671
Article in English | IMSEAR | ID: sea-170432

ABSTRACT

Context: In cases of damaged corneal endothelium cells (CECs) of the eye, transplantation of cultured vascular endothelial cells (VECs) may be a viable method to restore transparency. Aims: To evaluate the viability of replacing damaged primate CECs with cultured allogeneic VECs. Subjects and Methods: Rhesus monkey VECs (RMVECs) were cultured and proliferating cells were labeled with bromodeoxyuridine (BrdU) in vitro. RMs of the experimental group (n = 6) underwent manual Descemettt membrane stripping with transplantation of RMVECs labeled with BrdU; those in the control group received manual Descemetnt membrane stripping without transplantation. Postoperative evaluations included the transparency and appearance of the corneal graft; distribution and ultrastructural changes of RMVECs on the inner surface of the cornea using scanning and transmission electron microscopy, and immunohistological identification of BrdU. Results: At 90 days postsurgery, the corneal grafts of the monkeys in the experimental group retained better transparency than those of the controls, without corneal neovascularization or bullous keratopathy. A layer of cells with positive BrdU staining was found on the posterior surface of the treated corneas in the experimental group, while there was no VEC structure in corneal grafts from the monkeys of the control group. Conclusions: RMVECs can grow on the posterior surface of the cornea without Descemet’s membrane. Cultured and transplanted RMVECs appeared similar in ultrastructure. VECs can provide a barrier to maintain corneal dehydration and transparency to some extent.

SELECTION OF CITATIONS
SEARCH DETAIL